Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index

نویسندگان

  • Fariba Davanian
  • Fariborz Faeghi
  • Sohrab Shahzadi
  • Zahra Farshifar
چکیده

INTRODUCTION The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigate the role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial tumor grading. METHODS A group of 20 patients with histologically confirmed diagnosis of gliomas were evaluated in this study. We used a 1.5 Tesla MR system (AVANTO; Siemens, Germany) with a standard head coil for scanning. Multidirectional diffusion weighted imaging (measured in 12 noncollinear directions), and T1 weighted nonenhanced were performed for all patients. We defined two regions of interest (ROIs); 1) White matter fibers near the tumor and 2) Similar fibers in the contralateral hemisphere. RESULTS FDi of the low-grade gliomas was higher than those of high-grade gliomas, which was significant (P=0.017). FDi ratio (ratio of fiber density in vicinity of the tumor to homologous fiber tracts in the contralateral hemisphere) is higher in low-grade than high-grade tumors, (P=0.05). In addition, we performed ROC (receiver operating characteristic) curve and the area under curve (AUC) was 0.813(P=0.013). CONCLUSION Our findings prove significant difference in FDi near by low-grade and high-grade gliomas. Therefore, FDi values and ratios are helpful in glial tumor grading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index

Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...

متن کامل

Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...

متن کامل

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

Grading of Glioma Tumors by Analysis of Minimum Apparent Diffusion Coefficient and Maximum Relative Cerebral Blood Volume

Background: Gliomas are the most common primary neoplasms of the central nervous system. Relative cerebral blood volume (rCBV) could estimate high-grade Gliomas computed with dynamic susceptibility contrast MR imaging which it is artificially lowered by contrast extravasation through a disrupted blood-brain barrier. Objectives: Our intent was to clarify the usefulness of diffusion-weighted m...

متن کامل

Fiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation

Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres.  In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017